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A method capable of predicting the root mean square displacement response of a thin

structure subjected to a turbulent boundary-layer-induced random pressure field is

presented. The basic formulation of the dynamic problem is an efficient approach

combining classic thin shell theory and the finite element method, in which the finite

elements are flat rectangular elements with six degrees of freedom per node. The

displacement functions are derived from thin shell theory. Description of the turbulent

pressure field is based on the Corcos formulation for cross spectral density of pressure

fluctuations. A numerical approach is proposed to obtain the total root mean square

displacements of the structure. Exact integration over surface and frequency leads to an

expression for the response in terms of the characteristics of the structure and flow. An

in-house program based on the presented method was developed. The total root mean

square displacements of a thin plate under different boundary conditions subjected to a

turbulent boundary layer were calculated and illustrated as a function of free stream

velocity and damping ratio and the effects of flow direction on the response were also

investigated. In addition, the power spectral densities of the displacements of an SFSF

plate subjected to a fully developed turbulent flow were studied. The total root mean

square radial displacement of a thin cylindrical shell was obtained and compared

favorably with that in the literature.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Responses of structures subjected to turbulent boundary layer excitation have long been of great practical importance in
engineering. Some examples are; marine applications, aircraft structures and power plants. Random pressure induced by a
fully developed turbulent boundary layer is a frequent source of excitation and can cause low-amplitude vibration and
eventually long-term structural fatigue. For this reason, determination of the response of structures subjected to boundary
layer pressure fields is of importance.

Experimental and theoretical investigations of induced random pressure fields have been carried out by many
researchers including Corcos [1,2], Maestrello [3], Farabee and Casarella [4], etc. Investigations of the fluctuating wall
pressure beneath a turbulent boundary layer have also been conducted by many researchers for fully developed turbulent
pipe flow [5,6] and for turbulent boundary layers on flat plates [7,8]. Blake [9] includes a chapter on structural response to
All rights reserved.

; fax: +1514 340 4172.

s).

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.07.027
mailto:aouni.lakis@polymtl.ca


ARTICLE IN PRESS

M. Esmailzadeh et al. / Journal of Sound and Vibration 328 (2009) 109–128110
turbulent wall flow in his book. He determined relationships for the mean-square modal velocity and displacement of one
single mode of a panel in terms of the auto-spectral density of modal pressure.

Experimental works have mainly concentrated on the power spectral density of the pressure and space-time cross
correlation functions. Most of the studies in the literature are devoted to investigating pressure fluctuations beneath a
turbulent boundary layer, and studies on the displacement response of an elastic structure to these excitations are scarce.
A simply supported uniform thin cylindrical shell subjected to a turbulent boundary layer was modeled theoretically
by Cottis and Jasonides [10]. They derived a general expression for the space-time correlation of the response for
both arbitrary and boundary-layer-induced pressure fields but they did not proceed to evaluate the mean square
value of response, nor did they undertake numerical solution of the problem. Their work was later extended to orthotropic
shells [11]. To our knowledge, the first attempt to make a comparison of measured and predicted pipe vibration was
made by Clinch [12]. He considered simply supported thin cylindrical shells which he analyzed using Powell’s
joint-acceptance method. In the analysis he assumed that the areas over which the wall pressure fluctuations are correlated
are small compared with pipe dimensions. More importantly, he considered the response only in the high modes
of the shell, where resonances are so close to one another that a continuous curve of response versus frequency may be
assumed. He then compared his theoretical results to his own experimental data for a long, slender, thin cylinder
conveying water. The average root mean square wall displacement displayed good agreement between theory
and experiment at high frequencies. The limitation of his theory is that it applies only for high frequencies. However,
it is worth mentioning that only the first resonance frequencies of the shell make a significant contribution to the
response due to turbulent flow. Following Clinch’s study, Lakis and Paı̈doussis presented [13] a theory to predict the
displacement response of a uniform or axially non-uniform thin cylindrical shell to an arbitrary random pressure field,
and to a pressure field arising from the turbulent boundary layer of an internal subsonic flow. They obtained the
root mean square (rms) displacements of the shell for a pressure field originating from the turbulent boundary layer
of a subsonic internal flow at a specific circumferential wavenumber as well as the total displacement response by
summation over all circumferential modes. Curling and Paı̈doussis [14] investigated an analytical solution to obtain
the power spectral density (PSD) of the displacements of bundles of cylinders in turbulent axial flow. They calculated
PSD of mid-cylinder displacements and compared results with experimental measurements obtained by Gagnon and
Paı̈doussis.

Innovative and fast solutions for the stochastic response of a plate have been carried out by many researchers [15–19].
Birgersson et al. [15] used spectral finite element and dynamic stiffness methods to analyze the autospectral density of the
velocity of a plate due to a turbulent boundary layer. They utilized an approach in which the cross spectral density of the
response was determined by a single integration over all wavenumbers rather than double integrals over the surface.
Finnveden et al. [16] investigated the vibration response of a plate excited by a turbulent boundary layer experimentally
and numerically. The vibration response of the velocity of a thin-walled plate was measured and then predicted using wall
pressure models. The measured response agreed with existing models in a low frequency regime. Mazzoni [17] proposed a
deterministic model based on an analytical wavenumber integration procedure to predict the response of a thin
elastic plate subjected to both a turbulent flow of fluid at a low Mach number and acoustic noise. The power spectrum of
the acceleration of the fluid-loaded plate subjected to a turbulent boundary layer was obtained and compared with
that obtained using a classical random approach. Vitiello et al. [18] developed a procedure to evaluate the aeroelastic
response of a flat plate excited by a turbulent boundary layer. De Rosa and Franco [19] presented an exact and predictive
response for a simply supported plate wetted on one side subjected to a turbulent boundary layer. Autospectral velocity of
thin plates excited by low-speed turbulent boundary layer flow was analyzed numerically and experimentally by Hambric
et al. [20].

A cylindrical finite element was developed by one of the authors of this article, in which displacement functions were
derived from shell equations of motion instead of using polynomial displacement functions [21,22]. Prior to the work
presented herein, this element could only be applied to cylindrical, conical or spherical shells since it is a cylindrical
frustum. Based on this element, another work has been developed by one of the authors of this paper to predict the
response of a thin cylindrical shell subjected to random pressure fluctuations arising from a turbulent boundary layer [13].

In this paper we develop a general method to model any kind of thin elastic structure subjected to an arbitrary random
pressure field and subsequently to a pressure field arising from a fully developed turbulent boundary layer. The finite
element used in this study is based on a previously developed method to study dynamic behavior of a thin structure
subjected to stationary fluid [23,24]. In this approach a flat rectangular element with six degrees of freedom per node was
developed using a combination of Sanders’ thin shell theory and the finite element method. Since the transverse
displacement function is derived from thin plate theory this method may be easily adapted to take hydrodynamic effects
into account. Moreover, this method is capable of calculating both high and low frequencies with high accuracy. This
capability is normally of little interest in free vibration analysis, but it is of considerable importance for determining the
response of structures subjected to random pressure fields such as those generated by turbulent flow. A continuous random
pressure field is transformed into a discrete force field acting at each node of the finite element. Structural response to
turbulence-induced excitation forces is calculated using random vibration theory. Corcos formulation for cross spectral
density of the pressure fluctuations was adopted to describe the turbulent pressure field. A numerical approach is proposed
to obtain the magnitude of the random response. Exact integration over surface and frequency was carried out analytically
and an expression for the rms displacement response was obtained in terms of the characteristics of the structure and flow.
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An in-house program was developed to predict the rms displacement response of a thin structure to a random pressure
field arising from a turbulent boundary layer. In order to demonstrate the applicability of the proposed method, a thin plate
under different boundary conditions was investigated. Accuracy of the proposed method was also verified for a cylindrical
shell case. A thin cylindrical shell was analyzed and compared with the results obtained by Lakis and Paı̈doussis [13]. In our
proposed method, the Corcos lateral and longitudinal correlations were used, but in Lakis’ results Bakewell correlations
were employed. Even though different correlations were adapted in the numerical calculation, good agreement was found.
It should be noted that Lakis validated his results by verifying with Clinch’s experimental measurements and good
agreement was obtained [13]. In other words, comparison with Clinch’s experimental measurements shows that our
method is sound. It seems that their work is the only case in the literature that calculates the total rms displacement of a
shell subjected to a random pressure field arising from a boundary layer induced by turbulent flow. Comparisons with
experimental measurements are scarce in the literature. Thus, this case study is undertaken in order to validate our
method. As mentioned earlier, research has been conducted on auto-spectral density of the response of a plate but the
vibration amplitude (total rms displacement) was not investigated.

Assumptions introduced into the theory are as follows: (1) the plate is assumed to be thin; (2) the pressure field is
assumed to be stationary, ergodic and homogeneous; (3) the damping matrix is assumed to be proportional to mass and
stiffness matrices in order to uncouple the equations of motion; (4) the turbulent boundary layer is fully developed; (5)
acoustic pressure fluctuations induced by flow at moderate speeds are very small compared to turbulent pressure
fluctuations, therefore we assume excitation only arises from pressure fluctuations in the turbulent boundary layer; (6) the
compressibility effect is negligible; (7) flow is subsonic and Mach number is below 0.3; (8) pressure drop over the length of
the plate is sufficiently small for the mean pressure to be considered constant over this length; (9) influence of the
structural vibration induced by the fluctuating pressure field on the boundary layer is neglected due to its sufficiently small
amplitude; and (10) non-inertial dynamic effects of the flow are negligible.
2. Equation of motion

Dynamic behavior of a structure subjected to arbitrary loads is governed by the following equation:

½M�f €dg þ ½C�f _dg þ ½K�fdg ¼ fFðx; y; tÞg, (1)

where M, C and K are the global mass, damping and stiffness matrices of the system, respectively, d, _d and €d are the global
displacement, velocity and acceleration vectors, respectively and Fðx; y; tÞ is a vector of external forces as a function of space
and time.

Eq. (1) is quite general. In this paper we base our theory on a developed method for analysis of a thin plate in a vacuum
and in inviscid incompressible stationary fluid [23,24]. Global mass and stiffness matrices were determined using this
method to obtain the free vibration characteristics of such plates. To briefly summarize; this theory was developed using a
combination of classic thin plate theory and finite element analysis in which the finite elements were four-noded flat
rectangular elements with six degrees of freedom per node, representing the in-plane and out-of-plane displacements and
their spatial derivatives. The displacement functions were derived from Sanders’ thin shell equations instead of the usual
and more arbitrary interpolating polynomials. To establish the equilibrium equations for rectangular thin plates, Sanders’
equations for cylindrical shells are used assuming the radius to be infinite. Both membrane and bending effects are taken
into account in this theory to enable the element to model curved structures as well. It is worth mentioning that Sanders
based his equations on Love’s first approximation theory but he demonstrated that all strains vanish for rigid body motion,
which satisfies the convergence criteria of the finite element. The structural mass and stiffness matrices were determined
by exact analytical integration. The fluid pressure applied on the structure was determined by combining the velocity
potential function, Bernoulli’s equation and the impermeability condition and was expressed as a function of acceleration
of the normal displacement of the structure and the inertial force of the quiescent fluid. An analytical integration of the
fluid pressure over the element produced the virtual added-mass matrix of stationary fluid.
Fig. 1. Flat rectangular element.
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The geometry of the structure element used in this analysis is shown in Fig. 1. The nodal displacement vector at node i, di

is defined by

fdig ¼ fUi Vi Wi qWi=qx qWi=qy q2Wi=qxqygT, (2)

where Ui and Vi are the in-plane displacements of the plate reference surface in the x-and y-directions, respectively, Wi
represents the radial displacement of the plate middle surface, qWi=qx and qWi=qy are the first derivatives of the radial
displacement with respect to x and y, respectively, and q2Wi=qxqy is the cross derivative of the radial displacement with
respect to x and y at node i.

The displacement vector d, for a plate subdivided into finite elements having n nodes has the form

fdg ¼ ffd1g
T; fd2g

T; . . . ; fdng
TgT. (3)

3. Uncoupling the equations of motion

All the terms in Eq. (1) have now been defined except for the damping matrix, which will not be given an explicit form
for reasons to become obvious below. Before proceeding with a discussion of the response of the plate to random pressure
fields we need to uncouple the equation of motion.

The plate response dðx; y; tÞ at any point x, y and at any time t may be expressed as a normal mode expansion in terms of
the generalized coordinates qðtÞ and the modal matrix as follows:

fdðx; y; tÞg ¼ ½fU1g; fU2g; . . . ; fUNg�fqðtÞg ¼ ½Uðx; yÞ�fqðtÞg, (4)

where ½Uðx; yÞ� is the modal matrix in a vacuum, which consists of the orthogonal eigenvectors fUig, and N is the number of
mode shapes to be used in the analysis.

Substituting the above relationship into the equation of motion and pre-multiplying by UT, the following equation is
obtained:

½M̄�f €qg þ ½C̄�f _qg þ ½K̄�fqg ¼ ½U�TfFg, (5)

where M̄ ¼ UTMU and K̄ ¼ UTKU are the generalized mass and stiffness matrices, respectively. Due to orthogonality of

the normal modes, M̄ and K̄ are diagonal matrices and the generalized damping matrix C̄ ¼ UTCU will be a diagonal matrix

if it is taken to be proportional to M̄ and K̄, or a linear combination of these. The viscous damping type of structural

damping is adopted in the equation of motion. Denoting the rth diagonal term of C̄ by C̄r ¼ 2zr

ffiffiffiffiffiffiffiffiffiffiffiffi
K̄rM̄r

p
, M̄r and K̄r being the

corresponding terms of M̄ and K̄, and zr being the rth generalized damping ratio and introducing these into Eq. (1) leads to
the uncoupled set of equations:

€qr þ 4pzrf r _qr þ 4p2f 2
r qr ¼

1

M̄r
fUgTr fFg; r ¼ 1;2; :::;N, (6)

where f r is the rth natural frequency in Hz, M̄r is the rth element of the generalized mass matrix and N is the number of
mode shapes chosen for evaluation.

Upon solving the above equation the response at a typical node g, dg in terms of the generalized coordinates is found:

fdgðx; y; tÞg ¼
XN
r¼1

fUgrðx; yÞgfqrðtÞg, (7)

where Ugrðx; yÞ is the rth mode shape at node g with qrðtÞ being the associated generalized coordinates. This is the
instantaneous response due to an arbitrary force vector.

4. Representation of a continuous random pressure field at the nodal points

The continuous random pressure field of the deformable body will be approximated using a finite set of discrete forces
and moments acting at the nodal points. The plate is divided into finite elements, each of which is a rectangular flat
element. A pressure field is considered to be acting on an area Sc surrounding the node c of the coordinates lc and dc as
shown in Fig. 2. This area Sc is delimited by the positions l0c and l00c with respect to the origin in the x-direction and d0c and d00c
with respect to the origin in the y-direction. It is therefore possible to determine the pressure distribution acting over the
area Sc in terms of a lateral force. The lateral force acting at an arbitrary point, A, on the area Sc is given by (see Fig. 2)

FAðtÞ ¼

Z d00c

d0c

Z l00c

l0c

Pðx; y; tÞdx dy, (8)

where Pðx; y; tÞ is the instantaneous pressure on the surface. The force FAðtÞ acting at point A is transformed into one force
and two moments acting at node c, as illustrated in Fig. 2.
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The external load vector acting at a typical node c, Fc associated with the nodal displacements can be written in the
following form:

FcðtÞ ¼

0

0

Fn

My

Mx

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

0

0

�
R d00i

d0i

R l00i
l0i

Pðxi; yi; tÞdxi dyi

�
R d00p

d0p

R l00p
l0p
ðxp � lpÞPðxp; yp; tÞdxp dyp

�
R d00j

d0j

R l00j
l0j
ðyj � djÞPðxj; yj; tÞdxj dyj

0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, (9)

where Fn is the lateral force in the z-direction, Mx and My are the moments in the x- and y-directions acting at node c,
respectively, and l00i ¼ l00p ¼ l00j ¼ l00c , l0i ¼ l0p ¼ l0j ¼ l0c , d00i ¼ d00p ¼ d00j ¼ d00c , d0i ¼ d0p ¼ d0j ¼ d0c , lp ¼ lc and dj ¼ dc . This particular
indicial notation is introduced for convenience in subsequent manipulations.

5. Response to an arbitrary random pressure field

If the pressure field is deterministic, the response as expressed by Eq. (7) is the solution. In the case of a random field; however,
we must proceed differently. First we express the mean square of the response in terms of the spectral density of an arbitrary
random pressure field. This is followed by presentation of the response to an arbitrary homogeneous random pressure field.

5.1. Mean square displacements in terms of the cross spectral density of an arbitrary random pressure

As mentioned earlier, a random process can only be described in statistical terms. Here, we assume that the random
pressure is stationary in time and homogeneous in space, so the response can be expressed in terms of the cross-spectral
density of the pressure. Assuming that we are dealing with an ergodic process and using the correlation theorem, the mean
square displacement response at node g, d2

g ðxg ; yg ; tÞ, can be expressed as follows:

d2
g ðxg ; yg ; tÞ ¼ lim

T!1

1

T

Z þ1
0

D�gðxg ; yg ; f ; TÞDgðxg ; yg ; f ; TÞdf , (10)

where D and D� are the finite Fourier transforms of the nodal displacement and its complex conjugate, respectively, f is the
frequency in Hz and T is the period. It should be stated that limT!1D�gDg=T is the one-sided auto spectral density of
displacement.

Taking the Fourier transform of Eq. (6), we obtain the Fourier transform of the generalized coordinates as follows:

Qrðf ; TÞ ¼
Hrðf ÞUT

r Fðf ; TÞ

4p2f 2
r M̄r

, (11)

where Fðf ; TÞ is the Fourier transform of the force vector and Hrðf Þ is the frequency response function for the rth mode
defined as follows:

Hrðf Þ ¼ 1�
f

f r

� �2

þ 2izr
f

f r

� �( )�1

¼ jHrðf Þje
�iyrðf Þ, (12)
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where jHrðf Þj and yrðf Þ are the magnification and phase factors, respectively, f is the forced frequency, fr is the rth natural
frequency and i2 ¼ �1.

Substituting Eq. (11) into the Fourier transform of Eq. (7), the Fourier transform of the nodal displacement can be
written as follows:

Dgðf ; TÞ ¼
XN
r¼1

Ugr
jHrðf Þje�iyr ðf Þ

4p2f 2
r M̄r

UT
r Fðf ; TÞ. (13)

Introducing Eq. (13) and its complex conjugate into Eq. (10), the mean square response at node g is obtained:

d2
g ðxg ; yg ; tÞ ¼

XN
r¼1

XN
s¼1

Ugrðxg ; ygÞUgsðxg ; ygÞ

ð2pÞ4f 2
r f 2

s M̄rM̄s

� lim
T!1

1

T

Z 1
0

eiðys�yr ÞjHrðf ÞjjHsðf ÞjfUgTs Fnðf ; TÞfUgTr Fðf ; TÞdf , (14)

where Ugr and Ugs are the rth and sth mode shapes at node g, jHrðf Þj and jHsðf Þj are the magnification factors for the rth
and sth modes, yr and ys are the phase lags between the force and the response, and Fðf ; TÞ and F�ðf ; TÞ are the Fourier
transforms of the force vector and its complex conjugate, respectively.

For a lightly damped multi-degree-of-freedom system with well separated natural frequencies, the cross-product terms
are much smaller than the self-product terms; therefore the contribution of the cross-product terms to the mean square
displacement response can be ignored without significant loss of accuracy. Eq. (14) can then be rewritten as follows:

d2
g ðxg ; yg ; tÞ ¼

XN
r¼1

U2
grðxg ; ygÞ

16p4f 4
r M̄

2
r

lim
T!1

1

T

Z 1
0
jHrðf Þj

2fUgTr Fðf ; TÞfUgTr Fnðf ; TÞdf : (15)

Note that loads acting at each node have three components: one lateral force and two moments about the in-plane
directions. Therefore the cross spectral density of the force between any two nodes has nine terms.

We next define the one-sided cross spectral density of pressure:

Gppðxi; yi; xj; yj; f Þ ¼ lim
T!1

1

T
½P�ðxi; yi; f ; TÞPðxj; yj; f ; TÞ�, (16)

where P and P� are the Fourier transforms of the pressure and its complex conjugate, respectively.
Substituting the Fourier transform of the external force vector from Eq. (9) into Eq. (15), transforming the vector by

summation and then introducing Eq. (16) into Eq. (15), the mean square response at node g is obtained as follows:

d2
g ðxg ; yg ; tÞ ¼

XN
r¼1

U2
gr

16p4f 4
r M̄

2
r

Z 1
0
jHrðf Þj

2
Xn

i¼1

Xn

u¼1

FirFur

Z d00u

d0u

Z l00u

l0u

Z d00i

d0i

Z l00i

l0i

Gppðxi; yi; xu; yu; f Þdxi dyi dxu dyu

(

þ
Xn

i¼1

Xn

v¼1

FirFvr

Z d00v

d0v

Z l00v

l0v

Z d00i

d0i

Z l00i

l0i

ðxv � lvÞGppðxi; yi; xv; yv; f Þdxi dyi dxv dyv

þ
Xn

i¼1

Xn

k¼1

FirFkr

Z d00k

d0k

Z l00k

l0k

Z d00i

d0i

Z l00i

l0i

ðyk � dkÞGppðxi; yi; xk; yk; f Þdxi dyi dxk dyk

þ
Xn

p¼1

Xn

u¼1

FprFur

Z d00u

d0u

Z l00u

l0u

Z d00p

d0p

Z l00p

l0p

ðxp � lpÞGppðxp; yp; xu; yu; f Þdxp dyp dxu dyu

þ
Xn

p¼1

Xn

v¼1

FprFvr

Z d00v

d0v

Z l00v

l0v

Z d00p

d0p

Z l00p

l0p

ðxp � lpÞðxv � lvÞGppðxp; yp; xv; yv; f Þdxp dyp dxv dyv

þ
Xn

p¼1

Xn

k¼1

FprFkr

Z d00k

d0k

Z l00k

l0k

Z d00p

d0p

Z l00p

l0p

ðxp � lpÞðyk � dkÞGppðxp; yp; xk; yk; f Þdxp dyp dxk dyk

þ
Xn

j¼1

Xn

u¼1

FjrFur

Z d00u

d0u

Z l00u

l0u

Z d00j

d0j

Z l00j

l0j

ðyj � djÞGppðxj; yj; xu; yu; f Þdxj dyj dxu dyu

þ
Xn

j¼1

Xn

v¼1

FjrFvr

Z d00v

d0v

Z l00v

l0v

Z d00j

d0j

Z l00j

l0j

ðyj � djÞðxv � lvÞGppðxj; yj; xv; yv; f Þdxj dyj dxv dyv

þ
Xn

j¼1

Xn

k¼1

FjrFkr

Z d00k

d0k

Z l00k

l0k

Z d00j

d0j

Z l00j

l0j

ðyj � djÞðyk � dkÞGppðxj; yj; xk; yk; f Þdxj dyj dxk dyk

9=
;df , (17)

where d2
g is the mean square displacement response of node g, Ugr is the rth mode shape at node g, f r is the rth natural

frequency in Hz, f is the excitation frequency in Hz, M̄r is the rth element of generalized mass matrix, jHrðf Þj is the
magnification factor for the rth mode, Gpp is the one-sided cross spectral density of pressure, N is the number of mode
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shapes chosen for evaluation, n is the number of nodes, li and di are the coordinates of a typical node i in the x- and
y-directions, respectively, l0i and l00i are the limits of the area surrounding the node i in the x-direction, d0i and d00i are the
limits of the area surrounding the node i in the y-direction (see Fig. 2), and Fir , Fur , Fpr , Fvr , Fjr , Fkr represent the
elements of the rth mode shape corresponding to the radial displacement, derivative of radial displacement with respect to
x and derivative of radial displacement with respect to y, in respective pairs. We note that the indices i and u are associated
with lateral forces, p and v with moments about y, and j and k with moments about x.

5.2. Power spectral density of displacements

As stated, one of the purposes of this study is to determine the total rms displacements. In addition, we are able to
calculate PSD of displacements as a function of excitation frequency as follows:
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where Gdgdg
ðf Þ is the power spectral density of the nodal displacement at node g.

5.3. Mean square displacements in terms of the cross spectral density of an arbitrary homogeneous random pressure

The cross spectral density of a homogeneous pressure field can be expressed in terms of distances of separation
xx ¼ jxi � xuj and xy ¼ jyi � yuj instead of the coordinates themselves. Therefore, the one-sided cross spectral density of the
pressure can be written as

Gppðxx; xy; f Þ ¼ Gppðxi; yi; xu; yu; f Þ ¼ lim
T!1

1

T
Pðxi; yi; f ÞP

�ðxu; yu; f Þ, (19)

Thus all the components of the cross spectral density of the wall pressure in Eq. (17) can be expressed in terms of Gppðxx;xy; f Þ.
The one-sided cross spectral density of the wall pressure can be described by

Gppðxx; xy; f Þ ¼ Gppðf ÞCðxx; xy;0Þ, (20)

where Gppðf Þ is the one-sided power spectral density of the pressure and Cðxx; xy;0Þ is the spatial correlation function
between two points at the wall with a spatial separation of xx and xy, streamwise and spanwise, respectively. These spatial
separations should be determined experimentally. Eqs. (17), (19) and (20) together express the response of a thin plate
subjected to an arbitrary homogeneous random pressure field.

6. Response to a subsonic boundary layer pressure field

In the preceding section, expressions for the response of a thin plate subjected to an arbitrary homogeneous random
pressure field were obtained; however, the origin of the pressure field was left undefined. A model of the cross spectral
density of the fluctuating pressure field Gppðxx; xy; f Þ is needed as an input to the numerical prediction algorithm.
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Here we consider the particular case where the pressure field arises from pressure fluctuations in the subsonic,
turbulent boundary layer of a flowing fluid. In the turbulent flow boundary layer, pressure fluctuates randomly so it cannot
be described deterministically. Hence statistical methods should be employed to find the pressure.

6.1. Dynamics effects of a flow

We have indicated [25] how the inertial effects of a quiescent fluid contained by a shell or a shell partially or completely
submerged in a stationary fluid may be taken into account. The salient point is given here; the fluid pressure applied on the
structure is determined by combining potential flow theory, Bernoulli’s equation and an impermeability condition and is
expressed as a function of the acceleration of the normal displacement ðq2W=qt2Þ of the shell. Consequently, it can be
interpreted as the virtual added mass of the fluid. However, when the fluid is flowing the shell is subjected to additional
terms such as centrifugal and Coriolis-type forces. The former is proportional to U2 q2W=qx2 and considered as the stiffness
of the fluid and has a diminishing effect on the natural frequencies of the system. The latter is proportional to 2U q2W=qxqt

and has a damping effect on vibration. The magnitude of these effects depends on the dimensionless flow velocity
ðU½ð1� n2Þr=E�1=2Þ, where U is the mean flow velocity, n is Poisson’s ratio, r is the fluid density and E is Young’s modulus.
The effect of these forces can be neglected unless we are dealing with very flexible shells, very heavy fluids, or very high
velocities. In any case, for metal shells in the vicinity of fluid with flow velocity in the normal engineering range, damping
and stiffness effects of the flow are negligible [13] and will not be taken into account in this paper. Therefore the effects of
the flow on the shell can be considered the same as the effects of a stationary fluid in contact with the shell.

6.2. Statistical properties of fluctuating wall pressure in a turbulent boundary layer

6.2.1. Cross correlation function

Correlation decay in oblique directions, whether between points on the same plate or between points on different
plates, is represented by the product of the lateral and longitudinal decay functions. This independent-planes model of the
pressure field for oblique directions was first suggested by Corcos [1] based on existing measurements. White [26] showed
that the approximate separability does not introduce significant error. This theory was justified analytically by Curling and
Paı̈doussis for clusters of cylinders [14] and was experimentally verified by Bakewell [27] for a body of revolution in a water
medium. The cross correlation function can be written as follows:

Cðxx; xy;0Þ ¼ Cðxx;0;0ÞCð0; xy;0Þ, (21)

where Cðxx;0;0Þ and Cð0; xy;0Þ are the streamwise and spanwise spatial correlation decay functions, respectively.
In the case of subsonic turbulent boundary-layer pressure fluctuations the longitudinal and lateral spatial correlation

functions have been examined theoretically and experimentally by several investigators. For example, Clinch [28]
measured the narrowband longitudinal and circumferential correlations in thin-walled pipes when influenced by the
passage of fully developed turbulent water flow.

Bakewell obtained lateral and longitudinal correlations in a turbulent boundary layer for a body of revolution in a water
medium [27] and compared the results with the data obtained in flat plate boundary layers by Bull [8] and Willmarth and
Wooldridge [7,29], and with data from pipe flows which he generated himself [30]. The results showed that the statistical
properties of fluctuating wall pressure in a turbulent boundary layer for a body of revolution were in good agreement with
data obtained in flat plate boundary layers and also in pipe flows. This agreement was demonstrated for the spectral
density and the lateral and longitudinal correlation functions [27]. Different empirical expressions for different structures
have been suggested for longitudinal and lateral correlations; however, these expressions are approximately the same.

Corcos postulated that the longitudinal and lateral correlations may be presented as an exponentially decaying
oscillating function in the flow direction and a simple exponentially decaying function in the cross-flow direction,
respectively, as follows:

Cðxx;0;0Þ ¼ e�ax2pjSxx
jei2pSxx , (22a)

Cð0; xy;0Þ ¼ e
�ay2pjSxy

j
, (22b)

where

Sxx
¼

fxx

Uc
, (22c)

Sxy
¼

fxy

Uc
, (22d)

ax and ay are empirically determined constants, Sxx
and Sxy

are the Strouhal numbers, f is the excitation frequency, xx and
xy are the streamwise and spanwise distances of separation, respectively, and i ¼

ffiffiffiffiffiffiffi
�1
p

. The convection velocity Uc over
smooth walls is assumed to be a constant given by Uc ¼ 0:6U1 [8] where U1 is the free stream velocity.
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Blake recommends that ax ¼ 0:116 and ay ¼ 0:7 be used for smooth walls [9]. It is to be expected that these constants
will be approximately the same for different fluids at the same Strouhal number, at least for those with a sufficiently high
Reynolds number.

It should be noted that mean square response is a real value, so the real part of the cross spectral density of the
wall pressure should be taken into consideration. Putting all of these together and substituting Eqs. (22a) and (22b) into
Eqs. (20) and (21), the wall pressure cross spectral density ðGppðxx; xy; f ÞÞ in a fully developed turbulent region can be
written as follows:

Gppðxx; xy; f Þ ¼ Gppðf Þe
�ax2pjSxx

je
�ay2pjSxy

j
cosð2pSxx

Þ, (23)

where Gppðf Þ is the one-sided power spectral density of the wall pressure, Sxx
and Sxy

are the Strouhal numbers, f is the
frequency in Hz, and ax and ay are constants describing the spatial coherence of the wall pressure field in longitudinal and
lateral directions, respectively (see Eq. (17)).

6.2.2. Wall pressure power spectral density

The most significant characteristic of turbulent flow is the power spectral density. Fluctuating wall pressure beneath a
turbulent boundary layer for various velocities has been measured for different structures and the non-dimensional wall-
pressure PSD as a function of Strouhal number has been proposed by several investigators. Measurements of wall
fluctuation, auto- and cross spectral, have been made on the outside walls of cylinders with flow along the axis by
Willmarth and Young [31]. The power spectral density of wall pressure fluctuations on smooth-walled pipe was measured
by Clinch [32]. He illustrated the comparison between his results with those measured by Bakewell et al. [5] for subsonic
airflow in a smooth-walled pipe. Good agreement was found except at low Strouhal numbers due to the effects of
extraneous noise, which increased the measured power spectral density. The power spectral density of the turbulent wall
pressure fluctuations on a body of revolution in a water medium was obtained by Bakewell [27] and the result was in good
agreement with pressure data obtained on flat plates and in fully developed turbulent pipe flow. Willmarth and
Wooldridge measured the power spectral density of fluctuating pressure at a wall beneath a thick turbulent boundary layer
[7]. Bakewell et al. [5] obtained measurements of the mean square pressure per unit bandwidth, i.e. the one-sided power
spectral density versus Strouhal number for airflow at different Reynolds numbers in a pipe. The best curve fit for these
measurements was obtained by Lakis [13].

Although there are differences in investigation characteristics, namely pipe radius, velocity and even the geometry of
structure, the general features and magnitude of the spectral density are similar. The general trends of wall-pressure PSD
obtained by Bakewell et al. in pipe airflow, by Clinch in pipe water flow, by Willmarth and Wooldridge over a flat plate
boundary layer, and in a straight flow channel are similar as shown by Au-Yang [33]. Therefore, it seems that the proposed
expression by Lakis is applicable to a thin plate as follows [13]:

Gppðf Þ ¼ k2r2
f d
�U3
1e�k1d

�f=U1 , (24)

where Gppðf Þ is the one-sided power spectral density of the pressure, k1 ¼ 0.25, k2 ¼ 2�10�6, rf is the density of the fluid, f

is the frequency in Hz, d� is the boundary layer displacement thickness and U1 is the free stream velocity. It should be
emphasized that the power spectral density of the pressure in Eq. (24) and all its implications apply to excitation
frequencies above fd�=U1 of the order 0.1 due to the absence of empirical data below that point [13].

The well-known Schlichting formula is used to estimate boundary layer thickness d [34]:

d ¼ 0:37xðRexÞ
�0:2, (25)

where Rex ¼ U1x=n is the Reynolds number at the distance from the leading edge of the plate, n is the kinematic viscosity,
x is the distance from the leading edge of the plate and U1 is the free stream velocity. The boundary layer displacement
thickness d� is approximated as 0.125 times the boundary layer thickness d over smooth walls.

6.3. Mean square response

Substituting the power spectral density of the pressure from Eq. (24) into Eq. (23) and then introducing the cross
spectral density of the pressure into Eqs. (17) and (19) and taking integrations over surface and frequency, the mean square
displacement response ðd2

g Þ is obtained as follows:

d2
g ðxg ; yg ; tÞ ¼
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2
66664

3
77775; (26)

where Fij’s are the terms of the modal matrix, f r is the rth natural frequency in Hz, M̄r is the rth element of the generalized
mass matrix and G’s are complicated functions, too long to give here. Only Giu is given in detail in the Appendix. If the total
response is desired, the response must be summed over all significant modes of vibration.
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7. Calculations and discussions

7.1. Computational method and computer program

To determine the response of a thin structure to a random pressure we must proceed as follows: (i) the structure must
be divided into a sufficient number of finite elements; (ii) the mass and stiffness matrices for each finite element must be
determined; (iii) the global mass and stiffness matrices must be constructed; (iv) the eigenvalues and eigenvectors must be
computed; and (v) the rms response must be calculated at each node.

We must proceed with Eq. (26) where a great deal of the computational task has already been carried out. An in-house
program in FORTRAN language has been developed for carrying out the aforementioned steps and determining the
response to turbulent boundary-layer pressure fields. The process is summarized by the flow chart given in Fig. 3. The
Fig. 3. Flow chart of the in-house program for calculation of rms displacement response.
necessary time for calculation of the total rms displacement response for a plate composed of 100 elements is
approximately 20 min. This corresponds to the case in which numerous natural frequencies are utilized in the calculation of
the total rms response. However, if only a few of the lowest natural frequencies are employed the total rms response can be
calculated with an adequate degree of accuracy while computational costs can be considerably reduced. Moreover, the
computer calculation includes determination of the total rms of all degrees of freedom at every node. A large amount of
time may be saved if the response is not required at every node, or if only the total rms radial displacement is desired.

The present method and its associated computer program is capable of predicting the total rms response of a thin
structure subjected to subsonic turbulent boundary layer pressure fluctuations with arbitrary boundary conditions. We are
able to predict rms response at a given mode as well as total rms displacement over significant modes of vibration, which is
the case in most applications.
7.2. Verification of the method

In order to check the validity of the method a long thin simply supported cylindrical shell having a length of 240 in, a
radius of 3 in, and a thickness of 0.025 in, conveying water was studied. The material properties are: Young’s modulus
E ¼ 28.5�106 lb in�2, Poisson’s ratio n ¼ 0:305, density r ¼ 0.749�10�3 lb s2 in�4 and damping ratio z ¼ 2�10�2. This
shell was first studied by Clinch both theoretically and experimentally [12]. He obtained the mean square radial
displacement in the frequency range of 100–1000 Hz. Lakis and Paı̈doussis then analyzed the cylindrical shell using
cylindrical finite elements [13]. They developed a method to obtain the rms displacements associated with each
circumferential wavenumber. Natural frequencies of the shell were calculated first and it was found that many of these
natural frequencies were below 100 Hz. This indicates that the high frequency response as measured by Clinch will differ
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Table 1
Comparison of the total rms radial displacement (W) at the axial-midpoint of a simply supported cylinder subjected to fully developed turbulent internal

flow.

Ucl (in s�1) Total rms radial displacement (in)

Lakis’ theory, by summation over n ¼ 2–6 [13] Present method

248 1.9238E�04 3.1146E�04

520 1.4389E�03 1.8627E�03
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significantly from the total response. Lakis and Paı̈doussis obtained the high frequency response of the radial displacement
by taking into account only the modes whose natural frequencies were in the range of 93–1000 Hz. Good agreement
between their theoretical results and Clinch’s experimental results was found and the results lend confidence that the
values of the overall response of the shell obtained by them may also be reliable. They also calculated total response of the
radial displacement of the axial mid-point by considering all frequency components. This was accomplished by summing
the results with circumferential wavenumbers 2–6 at the flow velocities 248 and 520 in s�1 (see Table 1 and Fig. 9 in
Ref. [13]). The total rms response of radial displacement was found to be much higher than the response in the
frequency range of 93–1000 Hz. As expected, the contribution to the total response increases substantially with decreasing
frequency.

To the author’s knowledge, there is no reference in the literature for the total rms displacement of a plate or an open
curved structure subjected to a random pressure field arising from a boundary layer induced by turbulent flow. Therefore,
in order to verify our method at least qualitatively, the aforementioned shell was analyzed. First, natural frequencies were
calculated using our method and we observed that there are frequencies lower than those associated with circumferential
wavenumber n ¼ 2. These frequencies are associated with a beam-like mode of the cylinder (i.e. n ¼ 1), which was not
taken into account in Lakis’ work. It should be noted that in the case of a long slender cylinder some frequencies associated
with the beam-like mode are the lowest natural frequencies of the system. The total rms radial displacement at the axial
mid-point of a simply supported cylindrical shell was calculated for centerline velocities (Ucl) 248 and 520 in s�1 using our
method developed in this work. The results are tabulated in Table 1 and compared with those obtained by Lakis. As seen in
Table 1, the responses calculated by our method using flat shell elements are of the same order but higher than those
obtained by Lakis and Paı̈doussis. The total responses obtained by Lakis were calculated by summing the results over
circumferential modes from n ¼ 2 to 6 only and the responses corresponding to the beam-like mode have not been taken
into account. In our method, response calculation was carried out for all frequencies regardless of circumferential or axial
modes, which could justify the higher values. This discrepancy is attributed to the lower natural frequencies of the system
that have been included in our method. It should be noted that because of the mixed combination of the low and high
frequencies associated with the beam-like mode, we were not able to remove these frequencies from those calculated in
our program. The power spectral density of the radial displacement at the axial-midpoint of the abovementioned
cylindrical shell for a centerline velocity of 248 in s�1 and a damping ratio of 0.02 is illustrated in Fig. 4. It clearly
demonstrates the significant contribution of the lower natural frequencies to the PSD of response.
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turbulent internal flow versus excitation frequency for a centerline velocity of 248 in s�1 and a damping ratio of 0.02.
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Table 2
Convergence of natural frequencies of an SFSF plate subjected to stationary water from one side.

Coupled natural frequency (Hz) Discrepancy (%)

Mesh 10�10 Mesh 20�20

37.68 37.68 0.00

152.10 152.08 0.01

171.03 171.03 0.00

344.96 344.78 0.05

367.39 367.38 0.00

609.41 609.30 0.02

617.20 616.21 0.16

911.05 910.35 0.08

Table 3
Comparison of the natural frequencies of an SFSF plate subjected to stationary water from one side.

Coupled natural frequency (Hz) Discrepancy (%)

Haddara and Cao (analytic) [35] Present method

34.81 37.68 7.62

145.66 152.10 4.23

NA 171.03 NA

348.30 344.96 0.97

NA 367.39 NA
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7.3. Response of a plate subjected to a turbulent boundary-layer-induced random pressure field

The geometry and material properties of the plate chosen herein are taken from reference [35]. The steel plate has a
length of 0.655 m, a width of 0.20165 m and a thickness of 0.00936 m. The material properties are: Young’s modulus
E ¼ 207�109 Pa, Poisson’s ratio n ¼ 0:3 and density r ¼ 7850 kg m�3.

The plate is discretized into 10�10 flat rectangular elements. Further refining of the mesh beyond this did not influence
the free vibration characteristics of the system. The same mesh has been used for calculation of the random response.
Table 2 shows the convergence of the natural frequencies of a plate simply supported at its short sides subjected to
quiescent water from one side where the height of fluid is more than 50 percent of the length of the plate. It is observed
that the mesh refinement has no effect on the natural frequencies of the system.

Natural frequencies of the abovementioned SFSF plate subjected to quiescent water from one side were calculated
numerically using a flat rectangular element and the method outlined in Refs. [24,25]. The first few natural frequencies of
the aforementioned system compared well with corresponding analytical values in Ref. [35] and are listed in Table 3. For
the sake of brevity we did not tabulate the natural frequencies of the plate under different boundary conditions wetted
from one or both sides using our method. However, in all cases good agreement was found between our numerical results
and those obtained in Ref. [35].

The same plate was used and we obtained its response to turbulent boundary layer pressure fluctuations under different
boundary conditions. It should be mentioned that the rms response has not been studied in Ref. [35]. Here, the total rms
displacement responses of the plate were obtained by summation over all significant modes of vibration (see Eq. (26)) at all
nodes and then the maximum total rms response of the plate was calculated. Two sets of flow (i.e. fluid flowing over the
plate and fluid flowing on both sides of the plate) and different boundary conditions of the plate were considered in this
work. The effect of flow direction on the response was also investigated. The power spectral densities of the in-plane and
out-of plane displacements of an SFSF plate were studied. In order to check the role of damping as revealed in Eq. (12), two
damping ratios were considered in the calculation of the response.

7.3.1. SFSF plate

7.3.1.1. Response of an SFSF plate subjected to turbulent flow along its long sides from one side and both sides, respectively

(Figs. 5–7, and Tables 4–6). The first case study is a plate which is simply supported at its short sides, over which water is
flowing along the long side of the plate at a height more than 50 percent of the length of the plate. Based on previous
analyses [24,25] the natural frequencies of the plate in contact with quiescent water are calculated (see Table 3). As stated
in Section 6.1, solely the inertial effect of the fluid is taken into account in this work. It is worth mentioning that when the
fluid height exceeds 50 percent of the length of the plate the boundary conditions of the fluid at the extremity and the
height of the fluid are of no importance when considering natural frequency changes [25].

The variation of the rms radial displacements with natural frequency for the aforementioned SFSF plate subjected to
turbulent boundary-layer-induced random pressure fluctuations from one side is presented in Table 4. The results are
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Table 4
Variation of the maximum rms radial displacement with natural frequency for an SFSF plate subjected to turbulent boundary-layer-induced random

pressure fluctuations from one side where water is flowing along the long side of the plate for UN ¼ 25 m s�1 and z ¼ 10�3.

Natural frequency of an SFSF plate

in a vacuum (Hz)

Natural frequency of an SFSF plate in contact

with stationary fluid from one side (Hz)

rms radial

displacement (m)

51.04 37.68 0.1519E�03

206.03 152.10 0.1202E�05

231.68 171.03 0.3169E�05

467.28 344.96 0.9016E�07

497.66 367.39 0.1377E�06

825.50 609.41 0.2099E�07

836.05 617.20 0.1855E�07

1234.10 911.05 0.7687E�08

Table 5
Comparison of the maximum total rms radial displacement of an SFSF plate subjected to turbulent boundary-layer-induced random pressure fluctuations

from one side where water is flowing along the long side of the plate for UN ¼ 25 m s�1 and z ¼ 10�3.

Mesh size Max. total rms radial displacement (m) CPU time

10�10 0.1520E�03 20 min

20�20 0.1596E�03 30 h
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calculated for a free stream velocity of 25 m s�1 and a damping ratio of 0.001 at the node at which the maximum total rms
radial displacement was observed. The natural frequencies of the plate in a vacuum and in contact with stationary fluid
from one side are listed in Table 4. As expected the natural frequencies of the plate subjected to fluid at rest are lower than
those of the plate in a vacuum. Table 4 indicates that the lower natural frequencies contribute significantly to the response
and as natural frequency increases the rms response becomes insignificant quickly. It can be clearly seen from Eq. (26) that
the response is inversely proportional to the square of the natural frequency. This therefore indicates that the first six
natural frequencies suffice to calculate the total response for the plate studied here.

As mentioned in Section 7.3, refining of the mesh did not influence the natural frequencies of the plate in contact with
fluid (see Table 2). However, mesh refinement may yield slightly different rms displacement response. The effect of mesh
refinement on the maximum total rms radial displacement of the SFSF plate subjected to turbulent boundary layer from
one side where fluid is flowing along the long side of the plate for UN ¼ 25 m s�1 and z ¼ 0:001 is presented in Table 5. It is
observed that the mesh refinement has almost no considerable effect on the response and the total rms radial displacement
differs only about 4 percent but the calculation is very costly and time consuming. Therefore the mesh of 10�10 flat
rectangular elements is used for the calculation hereafter.

The maximum total rms displacement responses of the SFSF plate over which water is flowing along its long sides as a
function of free stream velocity in the range of 5–30 m s�1 and for different damping ratios, namely z ¼ 10�2 and 10�3 are
shown in Fig. 5. It is assumed that the turbulent boundary layer is fully developed over the entire plate. The results plotted
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developed turbulent flow from one side, where water is flowing along the long side of the plate: U, z ¼ 10�3, V, z ¼ 10�3, W, z ¼ 10�3,

U, z ¼ 10�2, V, z ¼ 10�2, W, z ¼ 10�2. The maximum total rms radial displacement (W) is plotted on secondary axis due to its higher

value in comparison to the minimal rms membrane displacements (U and V). It is observed that the total rms displacements are inversely proportional to

damping ratio and directly proportional to free stream velocity.
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in Fig. 5 reveal that the total rms displacements are inversely proportional to the damping ratio and directly proportional to
the free stream velocity. In order to demonstrate the behavior of rms responses, the maximum total rms membrane
displacements (U and V) are also plotted in Fig. 5. As anticipated, the membrane displacements of the plate are minimal.
The maximum total rms radial displacement is displayed on a secondary axis due to its higher value. The effects of the
membrane responses are minimal for all boundary conditions of the plate. For this reason further studies will only consider
radial displacement of the plate.

The power spectral density of the radial displacement (GWW) of the aforementioned SFSF plate subjected to fully
developed turbulent flow from one side where flow is along its long sides is plotted against excitation frequency in Fig. 6.
The PSD of the radial displacement in Fig. 6 is calculated for a free stream velocity of 30 m s�1 and a damping ratio of 0.001
at the node at which the maximum total rms radial displacement was obtained (see also Fig. 5). As expected, it shows
dominant peaks with coupled natural frequency values corresponding to those given in Table 3. Also as expected, the PSDs
of the in-plane displacements (GUU and GVV) are minimal; however, for the sake of demonstration the power spectral
densities of the in-plane displacements of the aforementioned SFSF plate subjected to fully developed turbulent flow from
one side where flow is along its long sides are illustrated against excitation frequency in Fig. 7. The PSDs of the in-plane
displacements in Fig. 7 are calculated for a free stream velocity of 30 m s�1 and a damping ratio of 0.001 at the node at
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Fig. 6. Power spectral density of radial displacement (GWW) of an SFSF plate subjected to fully developed turbulent flow from one side where flow is along
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displacement response was obtained for a free stream velocity of 30 m s�1 and a damping ratio of 0.001 (see also Fig. 5). The major peaks demonstrate the
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Fig. 7. Power spectral densities of in-plane displacements of an SFSF plate subjected to fully developed turbulent flow from one side where flow is along

its long sides versus excitation frequency. The PSDs are calculated for a free stream velocity of 30 m s�1 and a damping ratio of 0.001 at the node at which

the maximum total rms radial displacement response was obtained: PSD of membrane displacement in the x-direction (GUU), PSD of

membrane displacement in the y-direction (GVV). The PSDs of the in-plane displacements are minimal; however, for the sake of demonstrating the

behavior they are illustrated. The same major peaks as those in Fig. 6 are observed representing the natural frequencies of the system.
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Table 6

Comparison of the maximum total rms radial displacement of an SFSF plate with a damping ratio of z ¼ 10�2 subjected to fully developed turbulent flow

from one and both sides for different free stream velocities, where water is flowing along the long side of the plate.

UN(m s�1) Max. total rms radial displacement

of a plate wetted on one side (m)

Max. total rms radial displacement

of a plate wetted on both sides (m)

5 3.3552E�07 5.8416E�07

10 4.7501E�06 5.6450E�06

15 1.3484E�05 1.5456E�05

20 2.8316E�05 3.0860E�05

25 4.8085E�05 5.0640E�05

30 7.1533E�05 7.6949E�05
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which the maximum total rms radial displacement response was obtained. The same major peaks as those in Fig. 6 are
observed representing the natural frequencies of the system. It is observed that the lower natural frequencies contribute
greatly to the PSD of response.

The maximum total rms radial displacement of the SFSF plate with a damping ratio of z ¼ 10�2 subjected to fully
developed turbulent flow from both sides was calculated for the case where water is flowing along the long sides of the
plate. The results are tabulated in Table 6 for different free stream velocities and compared with those with flow on one side
of the plate. As anticipated, the response of the plate wetted on both sides is higher than the response of the plate over
which water is flowing due to its lower natural frequencies and larger virtual added mass [25].

7.3.1.2. Effects of flow direction on rms radial displacement response (W) of an SFSF plate (Figs. 8 and 9). The effects of flow
direction on total rms radial displacement of an SFSF plate with water flowing on one or both sides were studied. Fig. 8
shows the maximum total rms radial displacement versus free stream velocity and damping ratio for the same SFSF plate
studied earlier (see Fig. 5) but with water flowing over its short side. The results are also compared with those for the case
of turbulent flow along the long side of the plate. It is observed that the rms radial displacements for the case of flow along
the long side of the plate is higher than those obtained for flow along the short side of the plate, except for the free stream
velocity UN ¼ 5 m s�1.

The maximum total rms radial displacement versus free stream velocity and damping ratio for an SFSF plate subjected
to turbulent flow from both sides, where water is flowing along the short side of the plate is depicted in Fig. 9
and compared with the results where flow is along the long side of the plate. Contrary to Fig. 8, it is observed from
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Fig. 8. Comparison of the effect of flow direction on the maximum total rms radial displacement of an SFSF plate subjected to fully developed turbulent

flow from one side: flow along the long side of the SFSF plate with z ¼ 10�3, flow along the short side of the SFSF plate with z ¼ 10�3,

flow along the long side of the SFSF plate with z ¼ 10�2, flow along the short side of the SFSF plate with z ¼ 10�2. Here, the maximum total

rms radial displacements are illustrated against free stream velocity for different damping ratios. It is observed that the response for the case of flow along

the long side of the plate is higher than that for the flow along the short side of the plate except for free stream velocity 5 m s�1.
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M. Esmailzadeh et al. / Journal of Sound and Vibration 328 (2009) 109–128124
Fig. 9 that flow direction has almost no effect on the response of the SFSF plate subjected to turbulent flow from both sides
for a given velocity and damping ratio.
7.3.2. Effects of flow direction on rms radial displacement (W) of a CFCF plate (Fig. 10)

The second case study is a plate which is clamped at its short sides subjected to fully developed turbulent flow from one
side. In Fig. 10 the effect of flow direction on the maximum total rms radial displacement is compared for two cases: water
flowing over the short side of the CFCF plate and water flowing over the long side of the CFCF plate. The maximum
total rms radial responses of the CFCF plate with different damping ratios as a function of free stream velocity are also seen
in Fig. 10.
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Fig. 10. Comparison of the effect of flow direction on the maximum total rms radial displacement of a CFCF plate subjected to fully developed turbulent

flow from one side: flow along the long side of the CFCF plate with z ¼ 10�3, flow along the short side of the CFCF plate with z ¼ 10�3,

flow along the long side of the CFCF plate with z ¼ 10�2, flow along the short side of the CFCF plate with z ¼ 10�2. The response is illustrated

versus free stream velocity for different damping ratios. It is seen that the response for the case of flow along the long side of the plate is higher than that

for the flow along the short side of the plate except for free stream velocities 5 and 10 m s�1.
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We observed that the maximum total rms radial response for the case of water flowing along the long side of the plate
was lower than that obtained for the case of water flowing along the short side for free stream velocities 5 and 10 m s�1 and
all damping ratios. On the other hand, the inverse behavior was observed for higher free stream velocities and all damping
ratios.

As expected, the maximum total rms radial displacement is lower for the case of a CFCF plate than that obtained for an
SFSF plate. This can be seen by comparing Figs. 8 and 10.
7.3.3. Effects of flow direction on rms radial displacement of a CFFF plate (Fig. 11)

A plate which is clamped at one short side subjected to fully developed turbulent flow from one side was investigated as
the last case study. Fig. 11 illustrates the maximum total rms radial displacement versus free stream velocity and damping
ratio for the aforementioned CFFF plate where water is flowing over its short side. The results are compared with those of
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Fig. 11. Comparison of the effect of flow direction on the maximum total rms radial displacement of a CFFF plate subjected to fully developed turbulent

flow from one side: flow along the long side of the CFFF plate with z ¼ 10�3, flow along the short side of the CFFF plate with z ¼ 10�3,

flow along the long side of the CFFF plate with z ¼ 10�2, flow along the short side of the CFFF plate with z ¼ 10�2. The response is illustrated

versus free stream velocity for different damping ratios. It shows that the response for the case of flow along the long side of the plate is higher than that

for the flow along the short side of the plate for a given velocity and damping ratio.
an identically supported plate with turbulent flow along the long side. It was observed that the maximum total
rms radial response for the case of water flowing along the long side of the plate is higher than that obtained for the case of
water flowing along the short side for all velocities and damping ratios. The effect of flow direction on the
maximum total rms radial displacement versus free stream velocity and damping ratio for a CFFF plate subjected to
turbulent flow from both sides shows the same behavior; however, for the sake of brevity this case has not been
plotted. It should be noted that in all the aforementioned cases the same behavior was observed i.e. the total
rms radial displacement is inversely proportional to the damping ratio and directly proportional to the free stream
velocity.
8. Conclusion

In this paper we have introduced a method capable of predicting the total rms displacement response of a thin structure
to an arbitrary random pressure field. The method was then specialized for application to the case where the pressure field
originates from a turbulent boundary layer of a subsonic flow. This work is based on a previously developed method to
obtain the dynamic behavior of thin structures in contact with fluid. This method uses a combination of classic thin shell
theory and finite element analysis in which the finite elements are flat rectangular elements with six degrees of freedom
per node, representing the in-plane and out-of-plane displacements and their spatial derivatives. Since the transverse
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displacement function is derived from thin plate theory this method may be easily adapted to take hydrodynamic effects
into account. This method is also capable of calculating both high and low frequencies with high accuracy. This capability is
normally of little interest in free vibration analysis but it is of great importance for determining the response of structures
subjected to random pressure fields such as those generated by turbulent flow. Wetted natural frequencies and mode
shapes in a vacuum obtained using a previously developed method by the authors are incorporated into the calculation of
random response. A random pressure field is estimated at each node of the finite element. Description of the turbulent
pressure field is based on the Corcos formulation for the cross spectral density of pressure fluctuations. Root mean square
displacement was found in terms of the cross spectral density of the pressure. A numerical approach is proposed to obtain
the magnitude of the random response. Exact integration over surface and frequency leads to an expression for the
response in terms of the wetted natural frequency of the system, undamped mode shapes, generalized mass matrix and
other characteristics of the structure and flow.

An in-house program was developed to calculate the rms displacement response of a thin structure to random vibration
due to the turbulent boundary layer of subsonic flow. The total rms displacement response was obtained by summation
over all significant modes of vibration. To the author’s knowledge, there is no reference in the literature for the total rms
displacement of a plate or an open curved structure subjected to such random pressure. Therefore, in order to validate our
method a cylindrical shell was analyzed and the total rms radial displacement was predicted and compared with that
obtained by Lakis and Paı̈doussis. Although different expressions for correlations were adapted in the proposed method and
in Lakis’ work, good agreement was found. Since Lakis validated his results using Clinch’s experimental measurements, this
result shows that our method is sound.

The total rms displacement of a thin plate under various boundary conditions (i.e. SFSF, CFCF and CFFF)
subjected to a boundary-layer-induced random pressure field was studied and subsequently the maximum total
rms displacement of the plate was predicted. The maximum total rms radial displacement responses as a function
of free stream velocity for each set of flow and a given damping ratio were plotted for different boundary conditions of the
plate. It was observed that they all have the same trend and the most sensitive case is the CFFF plate with higher
magnitude.

The effect of flow direction on the response was also investigated. The effects of turbulent flow from one side and both
sides of an SFSF plate on the rms radial displacement were investigated and higher responses in the case of the plate
submerged in flow were obtained due to lower natural frequencies and larger virtual added mass, as expected. In all case
studies it was observed that the maximum total rms displacement is directly proportional to free stream velocity and
inversely proportional to the damping ratio. For each case study the same shift in response was observed as the
damping ratio changed through all velocities. It is noted that the maximum total rms displacements are small for the
set of calculations. Such small amplitudes are mainly of concern for fatigue considerations and must be below acceptable
levels.

Furthermore, our method is capable of predicting the power spectral density of the displacement. The power spectral
densities of the membrane and radial displacements of an SFSF plate subjected to fully developed turbulent flow from one
side where flow is along the long sides of the plate versus excitation frequency were plotted. The spectrum shows the
dominant peaks representing the coupled natural frequencies of the system. It was observed that the lower natural
frequencies contribute significantly to the PSD of response.

This method can be applied to investigate parallel plates or a system of plates subjected to a fully developed turbulent
random pressure field. As a future study, this work could be extended to analyze three-dimensional thin curved structures
subjected to a turbulent boundary layer random pressure field using a flat shell finite element with five degrees of freedom
per node [25]. The same random vibration method is applicable and statistical properties such as power spectral density of
pressure and correlations are more or less the same for different structures. Thin curved structures with discontinuities in
thickness and material properties under different boundary conditions subjected to various boundary conditions of fluid
can also be tackled.
Appendix A

A.1. Integration of the longitudinal correlations in the x-direction

Substituting Eqs. (22a) and (22c) into Eqs. (21), (20) and (19) and then introducing the result into Eq. (17) and
integrating over x to eliminate the space variable leads to expressions for the longitudinal correlations.
A.2. Integration of the lateral correlations in the y-direction

Substituting Eqs. (22b) and (22d) into Eqs. (21), (20) and (19) and then introducing the result into Eq. (17) and
integrating over y to eliminate the space variable gives us expressions for the lateral correlations.
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A.3. Some statements used in Eq. (26)

After introducing the expressions obtained from Sections A.1 and A.2 into Eq. (17) and integrating over frequency,
Eq. (26) is obtained. Here for the reference only Giu is given.
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where the constants are given as follows:
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where f is the forced frequency in Hz, f r is the rth natural frequency in Hz, zr is the rth damping ratio, l0i and l00i are the limits
of the area surrounding the node i in the x-direction, d0i and d00i are the limits of the area surrounding the node i in the
y-direction, Uc is the convection velocity, U1 is the free stream velocity, rf is the density of the fluid, d� is the boundary
layer displacement thickness, k1 ¼ 0.25, k2 ¼ 2�10�6, ax ¼ 0.116 and ay ¼ 0.7.
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